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Effect of gradient production on scalar fluctuations in decaying grid turbulence
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A generalized form of Yaglom’s equation, in which the effect of turbulent production of temperature
fluctuations is taken into account, is derived. The modified Yaglom equébich extends the work of
Danailaet al.[J. Fluid Mech.391, 359(1999] to incorporate the effects of decand production is compared
with experimental data. The flow under consideration is decaying grid turbulence with an imposed mean
temperature gradientMydlarski and WarhaffJ. Fluid Mech.358 135 (1998]). The agreement between
theory and experiment is good and the effects of nonhomogeneities in the flow are small.
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I. INTRODUCTION Writing Eq. (1) as A+B=C, term C (directly propor-

. ' . tional to(ey)), is associated with the transfer of scalar vari-
The p_ropertleS of a turbulent fleld_ca_n be studied by ance at a scale Equation(1) indicates that the mean scalar

considering thenth-order moments of its increments OVer a arjance transferred at a scalés transferred by both turbu-

separationr. These moments are more commonly calledient advection(term A) and molecular diffusior(term B).

structure functions and are defined By=((A6)")=((6(x  Equation(1) could also be used as an alternate means of

+r)— 0()'(’))n>. In 1949, Yaglom[1], following the notions (experimentally determining{e,), since the second- and

of Kolmogorov[2,3], developed a relationship between the third-order momertlts C.OU_:_d t:e ,infﬁrredthfrom hot- ?nd ”C°|d'
second-order moments of the scalar increment over an intef* < Measurements, via taylors nypo e@s/en a locally

. o e 2 isotropic and homogeneous flpw
V"’?' rin the Io.ng|tud|nal k) direction, ((A 0(2r)) ). and the At small Reynolds numbers, the suft+B never bal-
th|rd_-ord_er m|_xed _moments.{,A_ul(r)(A 6(r))"), also in the ancesC, except for the smallest scalés.g.,A+B=C for
longitudinal direction. Herel, is the component of the ve-

r/p=<5 atR, =66 [4]%). (In the limit of small separation
locity fluctuation in the streamwisg@.e., longitudinal direc- ter?ds t0 0 gn«Bz[C] ;s(will be discussed shor%y. #

tion, @ is .the spalar fluctuation and\ G(r_)Ea_(xlfrr) For intermediate Reynolds numbers (*OR,<500),
— 0(x,). This relation, called Yaglom’s equation, is given by Kolmogorov's equation and Yaglom’s equation are not sat-
isfied for moderate to large scalésg., Refs[5-7]). Equa-
d 4 tion (1) is only found to be satisfied up to a maximum scale
—(Auy(A 9)2>+2Ka<(A 0)%)= 3lear. (1) which depends on the Reynolds number. It is never verified
at the largest scales.
) ] } This discrepancy is the subject of this work. Though de-
The rate of destruction of the scalar varian¢ey), is  rived from a relation which is satisfiedthe advection-
defined as diffusion equatiol, Yaglom’s equation is not satisfied. This
can only occur if the derivation does not take into account
90 96 the phenomena present in nonisotropic flows, such as the one
<€a>EK<55>. (20 under consideration. In this work, the phenomena are the
e decay of the turbulence and the production of scalar fluctua-
tions by a mean scalar gradient.
where « is the scalar molecular diffusivity, and angular  In order to account for the role of the large scales, Frisch
brackets denote an average in time. Equatibnis derived [8] derived a version of Kolmogorov’s equation which in-
within the framework of Kolmogoroy2,3], that is to say, cluded a random forcing terfacting only at large scalgsA
assuming a cascade which is universal and locally isotropidetailed study of Kolmogorov's equation was presented by
for small enough scales and large enough Reynold$lill [9], where the nonstationarity of decaying flows was
numberst taken analytically into account, but no quantitative verifica-
tion was given. The influence of large scales on the statistical
properties of the cascade has also been addressed by Lind-

Equation(1) is the scalar field analog of Kolmogorov's equation: Porg[10] and Moisyet al. [11].
[—{((Auy)3) +6w(d/dr)((Aus)?)=2(e)r], which applies to the
velocity field. Both Kolmogorov’'s and Yaglom’s equations are par-
ticularly relevant to the study of turbulence since they are the only 2R, = (U;ms\v), Whereu, s is the root-mean-square value of the
known relations derivable from conservation of momentum and enlongitudinal velocity fluctuationy is the kinematic viscosity, and
ergy, respectively. is the Taylor microscale, defined as=[(u?)/{(du, /dx;)?)]1"2
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Recently, it was showf4] that, in grid turbulence, the dient. We take into account the role of the large scélbss
nonstationarity plays a capital role in the correct balance ofccounting for the mean scalar gradi€it, and we assume
Eqg. (1) and Kolmogorov's equation. This was demonstratedkhat the terms appearing at relatively small scales, such as
by an analysis of the transfer of the scalar moments thajermsA andB, are isotropic[We call this range of scales the
retained the |arge-Sca|e influence while SimultaneOUSIy APrestricted Sca”ng rangQSQ and define it to be the range of
plying the concepts of local homogeneity and isotropy t0scales from the Kolmogorov microscalg= (v%/(€))*) to
jeCted. Thus an accurate quantitative Study Of the transfer qf In the RSR’ the constant of proportiona“ty IS not neces-
the moments through the scales has to properly consider theyily equal to— 2(e,) because of the other effects we con-
large scale influence. In particular, Danagteal. [4] showed  sjder in this papet.The obtained results will be compared
that violations of Kolmogorov's and Yaglom’s equations im- yith the experimental data of Mydlarski and Warhgt.
ply a correlation between the large-scales of a turbulent flow Before proceeding, we point out one aspect of flows with

(where the fluctuations are generatehd the small scales mean scalar gradients. Assuming isotropy, the scalar “dissi-
(where they are destroyedro further elucidate these corre- pation” rate(e,) can be estimated as

lations, Danaileet al. developed generalizations of Kolmog-

orov's equation and Yaglom’'s equation that accounted for

the effects of nonstationarityf the second-order moments. (€p)iso=3K((dy. 0)?). (5)
They are !

Equation(5) is often used in experiments involving passive
scalars since the right hand side is readily measured. If the
assumption of isotropy is indeed valid, thésy) and(eg)iso

d U, (r,d
(30 6v g (B =32 [ 'y au )y

4 3 are equal. Hereafter, we will clearly differentiate between
_§<E>r’ ) (ey) and its isotropic form{e,)is,, given by Eq.(5).
Given that
and
d Uy (r, 0 - d d[@e?
- 2 — T2 y2 2 lim2xk—{((A)?)=lim2x—{ ——r2
(Auy(A6))+2x 5-((A6)?) rzfoy ax (A 0)%)dy fim kg (A0)%) fim Kdr< =
4 ,nad , 4
=§<e€)r, 4 =2k((x,0) >a(r ):§<60>isor-

(6)

respectively. In Eq(3), (e) is the mean dissipation rate of
the turbulent kinetic energy, andis a dummy variable.

These predictions were found to agree well with expe.ri-We see that Eq(1) reduces t®=C in the limitr —0. In this
mental data of homogeneous, isotropic, decaying, gridimit term A is two orders of magnitude smaller and there-
generated turbulenc@sotropic s_calar fluctuations were gen- e negligible. Consequently, at the smallest scalesHag.
erated by means of a “mandoling’12] placed downstream g consistent with the isotropic definition of the dissipation
of the grid) The deviation of the left-hand side of EQL)  yate (). .. This result is to be expected since Yaglom'’s
from 3(eg)r was found to be dictated by the effect of the oqyation was derived assuming isotropy. Alternatively, Ya-
non-stationarity of the second-order moments. The de.watlogmm,S equation will be verified for very small scales if and
was equal to U/r?)foy*(a/ox,)((A0)*)dy—the third  oniy if (e,)=(ep)ico.
term from the left in their modified Yaglom’s equatipBg. Experimental and numerical studies have shdqwi3—
@]. 16] that, in any turbulent flow with an imposed mean scalar

Given the success of the method proposed by I:)""n"’maradient G), the turbulent scalar field is anisotropic, even

?Lgl"og.;t.r e;‘i?rlﬁble ;0 eerx_tsrtwg: t? Tﬁ;enggmg:je)t(oﬂf?gvséfor the smallest scales and large Reynolds numbers. A rel-
: Jectiv IS paper | apply thi . 0 NOWSeyant example of this anisotropy is that the temperature de-
with mean scalar gradientgs addition to nonstationarities o . . o -
Specifically, the method will be applied to decaying grid- rivative variance in the direction parallel @ is different
generated turbulence with an imposed mean temperature griffian itis in the other directioris’,14,13. In particular, if one
defines thexs direction as parallel t@s, it was shown that
the variance of the scalar derivative along iedirection is
) . . .._larger than the variance of the derivative along a perpendicu-
3In decaying grid-generated turbulence, this effect can be mter'argdirection(i e.,X, Of Xp). For example gaperp
preted as a nonstationarity in a coordinate system that moves witln sl 2 Pie,
the mean velocity of the flow. In a fixed coordinate system, it can
be interpreted as a large-scale nonhomogeneity. This is, in fact, how . 2 2N 4o
this effect is presented in the equations that follow. RX3X1_<((?X36) >/<('?X10) )~12-14. (7
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In the flow under consideratiorR x =1.4. Therefore, in turbulent velocity fluctuations by the mean scalar gradient to
this work we use e,)=3.4k((dy. 0)?).* the dissipation of turbulent kinetic energy was3.44% (at
1

The implication is that the mean scalar gradient affectg(/ M =62—the point the f“T”‘.eSt downstregm at which mea-
the mixing down to the smallest scales, thus violating theSurements were made. This is also the point where the dissi-

concept of local isotropy. Therefore, in flows with mean sca-Pation was minimum, and thus th'e point Whgre the effects of
lar gradients, Yaglom’s equation will not be verified aty the stratification will be most significanM is the mesh

scale due to the scalar anisotropy present in such flows. Iengt_h of the grid, Thus_ the temperature fluctuations can be
considered to be passive.

We additionally point out that in homogeneous, isotropic,
Il. APPARATUS decaying wind-tunnel turbulence, an imposed linear mean
temperature gradient will not decf®0]. This is an idealiza-
The present results consist of a series of experiments pefipon, which is closely achieved in realiffl9] if the tunnel
formed under conditions similar to those of Mydlarski andidth is much larger than the integral scale of the turbulence.
Warhaft[7]. The discussion of the apparatus and the flowassuming that the mechanical to thermal time scale is unity,
characteristics will therefore Only summarize what is givenit can be showrﬁl?] that, in such a flow, the scalar variance
in the aforementioned paper. _ should be proportional ta?~", wheren is the decay expo-
The experiments were conducted in a x@91x 9.1 n? nent of the turbulenci.e., (ui)lufoc(xllM)“]. In grid tur-
low-speed, low-background-turbulence wind tunnel in the‘bulence,n~1.2—1.3 and passive scalar fluctuations should
Department of Mechanical and Aerospace Engineering aérow as &, /M)%7-98 As described by Mydlarski and War-
Cornell University. This tunnel was described by detail by 17) "an artifact of the active grid is a large integral scale
Yoon and Warhaff17]. The standard biplanar grids used t0 o4 ‘therefore a slight decay of the scalar gradient in the
generate the turbulence in Yoon and Warhaft were replace reamwise directioi (6T/dx,)/(9T/dx5)<0.1]. Since the

by an active grid which followed the design of Mak|t8]. ean scalar gradient decays, so does the production of scalar

Tueh_u:;e otf agn IaCF\Il?e g”dl dpermltz thethachlsvement Ofyctuations. As a result, the variance does not grow with a
much higher turbulent Reynoids NUMDETS than by means Qi e |5y dependence oq /M. In fact, it reaches a maxi-

standard “passive” grids. Active grids were used to ach|evemum atx, /M =37. However, when appropriately nondimen-

high-Retynt())Iclis—number, homogeneo_uz,tquaéi-is:{)tropié:, des’ionalized by the local mean temperature gradient and a
caying turbulence in average size wind tunrléig, 1§ and, length scaldi.e., (8(x1)?)/(B(x1)M)?], the scalar variance

in particular, they were used to study the effects of variation§ncreases asxg /M) (not shown, as it should for passive

n Re_ynolo!s number on the turbulent velocity f'%ﬂ. and scalar fluctuations generated by a linear mean temperature
variations in Pelet number on the turbulent scalar figld. gradient

T_he active gnd IS cpmposed of round gnid pars to which The velocity fluctuations were measured using a TSI 1241

triangular agitator wings are attached. The grid bars are r X-wire probe. 3.05um-diameter tungsten wires with a

tated .by means .Of stepper motors located on the OUISideo{)lngth to diar.net.er ratio of approximately 200 were used.

thi.g”d' ThedaLctlve grid, _:un(?dthanﬁ operatec(ij n a_irana:jnpe(rj t?hey were operated with an overheat ratio of 1.8 using Dan-

?;I !Evtiegoz erorg(f)gl\i ngl';; (I)( ane d \(/)Vv;,rr\]/\%aﬁsﬂescrl edIn d€e¢ 55Mo1 constant-temperature hot-wire anemometers. The
o Papers yaiarski a e X wires were calibrated following the method of Browne,
The mean temperature gradient was produced by mea

L - tonia, and Chud21], which used an effective angle be-
of atoaste first introduced by Sirivat and Warhaft9)]. It tween the wire and the streamwise direction. Following the

consists of a set of parallel, differentially heated ribbons Io-method of Lienhard22], compensation of the velocity mea-

?atedsfﬁ ﬂle egt\r:/mcr? E&)gﬁhe ;vmd tungfllvplﬁnfuirlnﬂc?ambe%urements for temperature fluctuations was made by means
see sirvat an arha or Yoon an arha el f a modified King’'s law with temperature-dependent coef-

a schematc The air entering the plenum chamber is heate icients. The two wires comprising théwire were separated

as it passes over the ribbons. As it continues though thBy 0.5 hm The cold wiréto measure the temperature fluc-
honeycombs, screens, etc. in the plenum, @fm@mentum tuatibns) wés placed 0.5 mm away from théwire

and thermal wakes of the heater ribbons are smoothed out. The temperature flljctuations were measured using a TSI
The result is a mean temperature gradient in the quasilaminzir210 single wire probe. Platinum cold-wires of 0,68 di-

Ilrfjrvc\)lu;r? Set;ec%mhejtetrhgle%:lgr.]tTshﬁefallﬁsgllg ac dL}Lr;';td r;is,[sr:gtgam_eter_Were used. The ratio of the etched length of the wire

linear temperature gradient results in the wind tunnel tesg%N Its diameter was approximately 55(.)’ and the spacing be-

section (downstream of the grid The resulting mean tem- een the prongs was at least three times the etched Iength.
The probe current in the fast-response dc temperature bridges

perature gradient is in the; direction.(The mean flow is in (based on the desi :
S : ) gn of Haughdal and Lienhg8]) was
the x; direction) The velocity fluctuationggenerated by the approximately 25QuA.

grid) act agains_t the mean temperature _gradient to produce A thorough discussion of the frequency response of the
thermal fluctuations. In this work, the ratio of production of probes and the cold-wire thermometers was given by Myd-
larski and Warhaft[7]. Also addressed was the optimal
choice of cold wire length given the competing effects of
*(€9)=(1+ Ry, T Ryx,) <((dy,0)?), and due to the nature of the spatial resolution and conduction between the cold-wire and
flow, Ryx, =1 (see Mydlarski and Warhaff]). its prongs. The discussiofmot repeated heyeshowed that
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TABLE I. Flow parametersM represents the mesh length of the A. Budget of ((A 8)?)
active grid, 0.114 n{=4.5 in). g represents the acceleration due to

gravity, 9.81 m/3 Using a procedure similar to that of Monin and Yaglom

[24], we write the advection-diffusion equation for the total
Mean speedm/s) 5.43 temperature® at two points,x and x*(=x+r). r is an
arbitrary vector equal to the separation between the two

X1/M 62 points. At the pointx one can write
T, (°C) 28.7
B (°C/m) 156 4O +0;0, O=k2 0, 8
v (m?/s) 16x10°° ' '
2 — 6 - > >
x (mr/s) 22.5¢10 and at the poink* =x+r, one can write
Urms (M/s) 0.348
(€) [=15v((auy /9%1)?)] (m?/s®) 0.278 r9t®++ﬁi+r9x.+@+=l<ﬁi+@+- (9)
| (=0.9u3,J(€)) (M) 0.136 i i
R, {=(u?)[15/ i 222 - _— L~ ~
A R<| (>:[u (|y/<:)>)] g 2960 Repeated indices signify summation andand u;” are
rms - -
7 [=(v31(€) Y] (mm) 0.348 instantaneous velocities atandx™, respectively. We also
l/n 391 remark that® =T+ ¢, where T=(®) and thati="Uu;=U;
Oims (°C) , , 191 +u;, where Uj=(u;). Noting that (i) ézGizﬁXiT, (ii)
=3.4x{( (96l x °Cls 4.23 ~ ~ . o
(en) [ I (_(é /3)1)(31])( ) 0.192 d U =0, 0" =4,+u;=3d+@=0 (since statistics measured
0 \=Urms : ! ! I I
(u36) (°C mls) -0.295 in one frame of reference are independent of the coordinates
9(Uz0)/(To(€)) -0.0344 of the other framg (iii) axiﬁi=0xi+1~1i*=0 (by conservation

of mass for an incompressible flpwand (iv) in the flow
under consideration, mean quantities are independent of the

there are no serious temporal resolution effects, and that thg,ordinate system in which they are writtene., U
chosen cold-wire length is an optimal choice since we are_ = '

+ _ _ 5 + _ +\

interested in both small- and large-scale statistics of the tem- U‘_’Dt =Di=ai+Uidy,” G; _(_3‘ and<€">_<€_9>)' sub-
perature field. _tractlon of Eq.(8) from Eg. (9) ylglds an equation for the

Finally, all signals were high- and low-pass filtered andincrement of temperature fluctuatiohs:
digitized using a 12-bit analog to digital converter. 4 or 8 — N 2 2
X 10° data points were recorded for each record. The data D:AG +u; aXfA®+ui‘7XaA®:K5xi+A+'“7xiA-
were sampled slowlywith intervals on the order of an inte- (10
gral time periodl for probability density function measure- ) _ _
ments, and rapidlywith intervals on the order of a Kolmog- After some manipulation, one obtains
orov time period for spectral(time-serieg measurements. It
is primarily the latter we use here. HAT+ A0+ Uidg AT+Ui0 A0+ AUG;

Table | lists flow parameters &t /M = 62—the furthest
point downstream at which data was recorded. Turbulent
guantities in this table were determined by subtracting, on a
mean-square basis, the effect of the low-wave-number spikes
present in the spectfan artifact of the active grjd This is a
more realistic description of the turbulence, and was de¥Ve multiply Eq.(11) by 2A 6 and (time) average to obtain
scribed in detail by Mydlarski and Warhaf]. However, the
structure functions presented in Sec. IV of this paper do con-‘)7t<(A‘9)2>Jr Ui&xi«A9)2>+26i<Au‘A0>+axi+<Au‘(A0)2>
tain contributions from the spikeflt is less simple to elimi-
nate their effect in physical space than in wave-number
space). These spikes occur at scales much larger than the
integral scale(i.e., they occur at frequencies much smaller
than those corresponding to the integral scaled do not
affect the turbulencgs,7].

+(9Xi+(AUiA 0)+Uigxi+A 0+ Uié’xiAa

= ko AT+ KZAT+ k0 A0+ kZA0. (1D)
i ! i !

+ dx (Ui (A 0)%) + o (Ui (A 6)?)

= k02 ((A0)?) = 2k(( - A 0)2) + kIZ((A0)?)

Where D= d,+Ujdy, = dy+Ujdy +Uidy =Dy +uidy and simi-
larly D" =D+ uf“axr.
is (ljr:e\t/r(]ellzpsggtlt?;’ daer?\izgr?#éegu?é?t 2} AY Z)gzli mwshiiﬂuiztlon 6Dﬁferfnces betv!eep statis}ics>aT andx are denoted by [e.g.,
then integrated. The result is a modified version of Yaglom’sA® =07 -6=60+1)=0(x)].
equation that includes the effect of turbulent production and ‘Noting  that (A 6)d5 (A0)=d[A 63, (A6)]—[d,(A6)]
nonstationarities. = %aﬁi[(A 0)?1—[dy,(A6)]%.

lIl. THEORY
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—2k((dx A 6)?). (12) which moves with the mean flowNeglecting the(small-
' scale nonhomogeneous terms, one obtains
We can therefore write
Uidy ((A0)%) +d; (Aui(A0)%) +2Gi(Au;A 6)
I{(A0)%)+ U9, ((A0)%) +2Gi(Au;A6)
=2k37((A0)%) — & ey). (17)
+ 3, (AU(A 0)%) + (dy + 0, )(Ui(A 0)?) |
> 2 ) N Due to the geometry of the flow under consideration,
= k(3 + 9, )((A0)%) —2(eq )~ 2(ey) |Ui|=U; (sinceU,=U3;=0) and|Gj|=G3=G since G;
, 2 =G,~0). Therefore, Eq(17) can be rewritten as
= k(dy + 3, )((A0)%) —4(ep). (13
' U0y ((A0)%) +d; (Aui(A6)%) +2G(AugA )
At this point, it is insightful to define a new variadlg] X

Bl =2k {(AO)2)—4{€,). 1
asX=(x+x")/2, such that ko {(80)%) = 4(ep) (18)

B. Modified version of Yaglom’s equation

1 1
(V=0 Y3 x( ) A ()= ()5 k().
Given the budget of(A #)?) for the flow under consider-

(14 ation, it can be integrated to obtain a modified version of
Consequently, Yaglom’s equation which accounts for the effects of produc-
tion and non-stationarity.
A ()= 0y + . (15) We begin by assuming the isotropic form of the operator
' b d =(2Ir +alar)=(1r?),(r?-). Multiplying Eq. (18 by
The result—in terms of the new variables )_()—is r2, integrating with respect toand dividing byr?, we obtain
a version of Yaglom’s equation that contains additional
— ) 1 ) terms resulting from the mean temperature gradiémtand
Di((A6)%)+2Gi(AuAO) +| o + 5 dx, [(AU(A6)7) the nonstationarity:
2 2 1 2 2 A A 2 2 d A 2
+(9x ){Ui(A0)°) = k| 257 + 5 3% [((A6)%) —4(ey). (AU (A7) +2k 5 ((A6))
(16)

1 (r 4
. . _jf Y [U10x ((A6)?)+2G(AuzA 6)]dy= §<60>r-
As noted by Hill[9], in a locally homogeneous flow, all r=/o
derivatives of statistics with respect to the new variabde, (19
(i.e., &Xi<~>) are negligible. It can be shofthat the nonho-

mogeneous turbulent and molecular transport terms are smatlerey is a dummy variable, representing the separation
in this flow. We could retain these terms in our analysis.Equation(19) and its verification in Sec. IV are the principal
However, since they are small and because the objective @¢ésults of this papet.Denoting the new terms by and P,
this work is to examine the effect of gradient productien  the new equation is then written as

addition to the decayon the scalar fluctuations, we choose

to omit these terms in our analysis. A further analysis, where A+B+D+P=C, (20
the nonhomogeneous terms are signifid@% would be of
merit. whereC=4/3(e,)r.

In a fixed reference systend,(-)=0. We will still call Term D represents the effect of the deday nonstation-

termU;d,() a “decay term” as it represents the decay of the arity, which, as mentioned in Sec. I, can also be considered

turbulence(in a fixed frame of reference rather than oneas a non-homogeneity in the streamwige)(direction], and
is given by

8Measurements indicate that the nonhomogeneity in the viscous
transport of scalar variance is dominated by its longitudinal compo-
nent, i.e.J5 (A 6)?)~d ((A6)?). In addition, it can be shown that
the longitudinal component makes a much smaller contribution tol-
the modified Yaglom'’s equation than the terms that will be retained.
The nonhomogeneity in the turbulent transport of scalar variance,
though larger than the nonhomogeneity of viscous transport, can
also be shown to play a minimal roie this flowwhen compared to The large-scaléi.e.,r —=) and small-scaléi.e.,r —0) limits of
the other terms retained in our analysis. Eq. (19) are respectively discussed in Appendices A and B.

U r
pin--—2[yaa0ndy. @
r 0

he production tern® is
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2G (r
P(r):——zf y2(AugzA 6)dy. (22
r<Jo
: . , 10°
The magnitudes of the terms in E@.9) are determinedex- =~
perimentally and presented in Sec. IV. =

We now choose to make a few comments regarding the 5
measurement of the new terms in our generalized form of 5~
Yaglom’s equation. In its derivation, we have assumed an 107k
isotropic form ofd, . In an isotropic flow(such as decaying

grid turbulence with isotropic temperature fluctuatiofgen-
erated by a mandoline, as in Danagaal. [4]), such an
assumption is readily made. In the present work, the effect of
production on the scalar fluctuations is of interest. By defi- o2l : SN
nition, for production of scalar fluctuations to occur, the flow 10° 10
must be anisotropi¢since a mean scalar gradient must be
present However, we are able to justify the assumption of FIG. 1. Longitudinal and transverse “heat flux structure func-
the isotropic form of the gradient operator as follows. tions.” (Aug(A6))(ry) (x), (Auz(A8))(r;) (@), and
Since turbulent advection and molecular diffusion terms{Au;(A#))(r,) (O). These are DNS results graciously provided by
correspond to small-scale motions, we assume they are |@. Pumir.
cally isotropic and will therefore only depend on the modu-

Iusr=|F|. For simplicity, we measure along thex; axis. scales, the modified equation maintains approximately the
The decay termD is a large-scale, nonhomogeneoussame level of precision for all scales.
term (see Ref.[4] for further physical explanatiohsThe At the smallest scales, the supplementary contribusien

second-order scalar structure functions are not necessarihegligible, and Eq(19) reduces to Eq(6). In this flow, Eq.
isotropic in a flow with a mean scalar gradient. They are(6) is not verified because of the small-scale anisotropy of a
approximately isotropic for relatively large scales, wherepassive scalar in flows with a mean scalar gradient. As men-
((AG))(r)=((A0)?)(rz)~2(#%). At the smallest separa- tioned in Sec. |, the “total” scalar dissipation is therefore
tions, the longitudinal and transverse second-order structurgifferent from the value obtained when local isotropy is as-
functions differ by a factor 1.4. This latter result derives fromsumed. Therefore, in the limit af—0, (A+B+ S)/C tends

the already mentioned fact th4(3x39)2>/<(f7x19)2>“1-2 to a value less than one due to the nonisotropic definition of
—1.4[7]. However, since the decay term is only significant{(€s) used in estimating terr@. In this limit, (A+B+S)/C

at the largest scaldg], it can be well approximated as de- should tend ta(e)iso/(€,)=3/3.4=0.88, which it does, to
pending solely orr (again, measured along thg axis for ~ Within experimental error.

simplicity).

The production ternP is not isotropic. Were this term 18
isotropic, replacement af; by (for instance u,, would not
change the value oP. (This is not the case{(u;6)| 1.6

<|(uz6)| [19,26].) However, in the limit of large scales, the {4
directional differences in this term disappear, since
limy,|_.P(r)=4G(u36), regardless of the orientation of
For small scales, the value Bfdepends slightly on the spa-
tial direction, as observed in Fig. 1. It will be shown below

e
hO)

Terms in Eq. (20)

that the contribution oP to Eq. (19) decreases with scale 0.8

size. Therefore, it is a reasonable approximation to evaluateq,0 ol
P(F) using only one spatial directiorx(), since its contri- ’
bution is significant only at large scales. 04
0.2

IV. RESULTS 0

Figure 2 represents terms in EQ0), divided by termC. 10

The supplementary ant”bUt'O'ﬂC,:(D+ P)/C, is posi- FIG. 2. The nondimensionalized terms in the generalized form
tive for all scales and increases in importance for larger ang Yaglom's equation[Egs. (19) and (20)]: (A+B+D+P)/C
larger scales. The ratiof\(-B)/C and (A+B+S)/C ofthe  _1y a5 a function of longitudinal separation. The sumAsC
terms appearing in E¢20) are to be compared with the wide (gashed ling and B/C (dot-dashed line—Yaglom’s original
solid line (which is equal to 1 for all scalgsWhile the  equation—is represented by . The P/C source term is given by
classical Yaglom equatioft) is verified to within 15% for [0, —D/C by X, and their sum%/C= (D + P)/C) by +. The sum
small scales, and worsens significantly for larger and largesf all the termq (A+B+ S)/C] is given by@®.
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For larger scale$where the supplementary contributions Its effect cannot be “solved” nor explained by such an ap-
begin to take effegf termP is positive, as must be the case, proach, and requires further efforts.
since the turbulent heat flux in the direction of the gradient is
negative(and therefore so must b@\uzA 6)). In the flow ACKNOWLEDGMENTS

under consideration, terr® is negative sinceﬂxl<(A0)2> E. Ansel d 7. Warhatt qull " ledaed
>0, so that temperature fluctuations increase in the down:_ " nseimet and Z. Warhaft are gratefully acknowledge

stream direction. This is a direct consequence of the resenfor their help. A. Pumir and E. Lindborg are also warmly
’ a P Ranked for fruitful discussions. Support was provided by the

of the mean scalar gradie®, which constitutes a continu- Fonds pour la Formation de Chercheurs et I'AidéaaRe-

ous injection of scalar fluctuations in this flow. _ cherche, the Natural Sciences and Engineering Research
In the limit of large separations, it is shown in Appendix council of Canada, and the U.S. Department of EnéBgr

A that Eq.(19) is equivalent to the one-point scalar variancesjc Energy SciencesThe collaboration between L.D. and

budget. Hence the generalized version of Yaglom’s equatio \1 was initiated by aBourse d’excellence pour un stage de

tends toward 1 for large separations, as it should. At thesgscherche scientifiquézom the Ministee de I'Education du
large scales, the ratio of the magnitudes of the productiogyghec.

term (P) and the nonstationary ter(®) is about 3, in agree-
ment with the result obtained for the corresponding terms in
the scalar variance budgéflso see Fig. 4 for the position
X1/M =62 in Appendix A) Equation(19) is examined in the limit of large scal@se.,

In Danailaet al.[4], the scalar field was isotropic, and the r—). As already explained in Ref4],
nonstationarity was the only large-scale mechanism in this
flow. Consequently, the nonstationarity dominated the gen- ) , Up(r, )
eralized Yaglom’s equation at large scal¢s.Danailaet al., lim D= lim __2f y“ox,((A0)%)dy

. e r—ow r—ow r 0

Eq. (4) was verified to within=10% over the range of scales

APPENDIX A: LARGE-SCALE LIMIT OF EQ. (19

investigated. The present study involves two large-scale U |

mechanisms(production and nonstationarjty This, com- =Iim——2l[f yzaxl((AH)z)dy

bined with the small-scale anisotropy arising from the mean r—e T 0

temperature gradient, resulted in a less accurate balance of .

Eqg. (19 than obtained by Danailat al. +f y2a, (A 0)2>dy},
Figure 2 indicates that, in this flow, the transfer of scalar I !

variance is dictated not only by turbulent advection and mo- ) ) )
lecular dissipation, but also by turbulent production and nonWherel is the |2nt§§|ral length scale of the turbulence, defined
stationarity. These mechanisms should be taken into accouk! asl EO-9<U|> 1(€).

not only in the one-point scalar variance budget, but in the FOrr—o, foy®d, ((A6)*)dy<[{y?d, ((A6)?)dy, since
higher-order moment balances of all flows characterized by ¢he first integral has a finite value while the second one tends
moderate Reynolds number and fed by a mean-temperatute infinity, viz. lim, .., ((A 6)2>=2c7xl( 6?) is finite while

gradient. y? is continuously increasing. Thus, foe-1, one can make
the approximatior{(A 6)%)~2(6?), so that

V. CONCLUSIONS U, (7 2U,
_ _ _ lim D:——f Y2, ((A0)?Ydy~— —=4, {6%)r.
A generalized form of Yaglom’s equation was derived for r oo r2Ji 1 3 1

the case of decaying grid turbulence with an imposed mean

temperature gradient. The large-scale motion is characterizdd a similar manner, one obtains

by two phenomena: the nonstationarity of turbulent tempera- 4

ture fluctuations and their production by a mean temperature im P §G<u30)r. (A1)

gradientG. (In this flow, the nonhomogeneous terms associ- L
ated with the turbulent and viscous transport of temperature

variance were not found to play a significant rpl€he ef- Given that

fects relating to the production and nonstationarity of tem- ) )
perature fluctuations are mathematically expressed as two limA=1imB=0, (A2)
new terms in Yaglom’s equation. The generalized Yaglom’s == =

equation(lg) is well satisfied over an exter_1ded range of Eq. (19) reduces to the one-point scalar variance budget:
scales, particularly for the largest scales. This result empha-

sizes the role played by the large-scale motion, herein de- U130y (02)124+ G(uzh)=—(e,). (A3)
composed into two separate effects. However, the effect of !

the persistent anisotropy of passive scalars in flows with @ nondimensional form of Eq/A3) is obtained by dividing

mean scalar gradiefitesulting in(e,) #(€4)iso) is observed.  poth sides by (e,), which can be written symbolically as
Such an anisotropy is inconsistent with the implicit assump-

tion of local isotropy in the derivation of Yaglom’s equation. [+11=1. (A4)
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FIG. 3. Terms in Eq(A3) and(A4) as functions of downstream
position. 1 =—U14, (6°)/[2(eg)] (D), 11 =—G(uzH)/(es) (), FIG. 4. Ratio of the production to nonstationary terrhig') in
and termd +11 (@). * represents the variation of(2,)/G*M?2. Egs.(A3) and (A4).

distance in Fig. 3. Ternh represents the nonstationarity and r4, by
termll represents the turbulent production. The former term

is negative(sinceaxl(02> is positive in the flow under con- , )\ 2

sideration. Its magnitude decreases withto approximately (AB)2)= ‘9_9 r2— i ‘9_0 r. (Bl

&Xl 12 axi
At the two furthest downstream positions, the sum of o )

termsl andl| is equal to 1(to within = 10%), indicating that ASSUMINg isotropy, one can write
the production and decay terms balance the scalar dissipa-
tion. In other words, the turbulent transport of scalar variance 1.5

Termsl andll are shown as a function of downstream- proximated, using a Taylor series expansion up to order
0.5 atx;/M=62. Termll is positive and larger than 1, but

tends toward 1 for the furthest downstream positions.

has a small role at the large scales far enough away from th

grid. Note that the flow under consideration has been previ-

ously investigatede.g., Sirivat and Warhaft19] and Over- ® ? } °

holt and Popg26]). In Ref.[19], the one-point energy bud- N ' ' f _ o
get was also balanced with a precisionrot0% —see Fig. 18 13 e o ’

of this paper. The nonhomogeneous advection term,; i

ai(u;6%), is negligible, since’3(u;#)~0—see Fig. 11 and <&
the comments in Ref.19]. (Note that Fig. 11 of Ref[19] ‘o
presents results for a case where the mean temperature grgo.s
dient is generated by a mandoline. The results may differ for™
a mean temperature gradient generated by a topster.

We remark that in Fig. 3l +11~0.9. However, for the

largest values of shown in Fig. 2 A+B+S)/C~1.1 (at L% A X% |
x/M=62). This is because at=2000y,, # and #" are not 0 A i

yet completely uncorrelated. In the limit of »—«, 6 and 10' X M 102
6" decorrelate andX+ B+ S)/C must then become equal to !

[+11.

Figure 4 represents the ratio of the production and non- FIG: 5. Terms in Eq(B5):

stationary terms in Eq(A4) (i.e., II/1), which is approxi-

mately —3 for a large range of positions behind the grid. _ﬂ%/ 25< (‘9_‘3) > (M),
This value is in agreement with lim..P(r)/D(r)~—3, as 15 0% 3\ 1 axg
can be observed in Fig. 2. 2G [ous 6 w | a20\2
?<a—a—>/ 3\\ae) | O
APPENDIX B: SMALL-SCALE LIMIT OF EQ. (19 and
It is of interest to study what E§19) becomes in the limit B (ﬂl)(ﬁ_ﬂ)z X #6\° ®)
of small scales (—0). In this limit, {(A#)?) can be ap- Xy )\ %y 3 2 '
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J
<(A0>2>~§(97< €o)iso- (B2)
Similarly,
dug 30
(AugA §)= <0>L:i 8x1>r2'
a0
(Auy(A6)%)= < (axl) >r3. (B3)

Using relations(B1)—(B3), the supplementary terms in Eq.

(19) become

S
ol ) e

<(A 0)%)dy

Uy ‘9<60>|so r3

15K 0')X1
J (Aush ydy=— o | 222 2013 (g
— | yXAuzAg)dy ?a—xl'&—xlf-()

Substitution of the above expressions into Ed), replacing
(Auy(A6)2) by ((duyldxq)(96l9x1)®)r® and equating
terms inr3, one obtains

PHYSICAL REVIEW &4 016316

(aul)( ae>2 2k [ [ 526\°
(9X1 (9X1 * 3 ax% ) (BS)

Equation(B5) is the transport equation fdey)iso- It is
analogous to the transport equation {ej (or, equivalently,
the enstrophy(w?)), as first written by Batchelor and
Townsend[27]. The transport equation fgre,) was previ-
ously studied28—3( in decaying, isotropic grid turbulence
heated by a mandolindThere the budget ofeg)is, was
simpler since a mean scalar gradient was not presénése
studies only considered the first term on the left hand side
and the two terms on the right hand side of E85).

In the flow under consideration, both terms on the left
hand side of Eq(B5) are small with respect to the dissipa-
tive term, 2K<((9§10)2>/3, as can be seen in Fig. 5.

This result is different with respect to the one obtained in
(standard grid turbulence without a mean scalar gradient
[28], where the role of the nonstationary term was found to
be very important in the balance of E@5). In our case,
equation(B5) is balanced { 15%; see Fig(5)) by the terms
on the right-hand side. This result is attributed to the pres-
ence of the passive scalar production term, which constitutes
the only difference between this flow and classical grid tur-
bulence with isotropic temperature fluctuation generated by a
mandoline, and the higher Reynolds number of the present
flow.
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