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Effect of gradient production on scalar fluctuations in decaying grid turbulence
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A generalized form of Yaglom’s equation, in which the effect of turbulent production of temperature
fluctuations is taken into account, is derived. The modified Yaglom equation„which extends the work of
Danailaet al. @J. Fluid Mech.391, 359~1999!# to incorporate the effects of decayandproduction… is compared
with experimental data. The flow under consideration is decaying grid turbulence with an imposed mean
temperature gradient„Mydlarski and Warhaft@J. Fluid Mech.358, 135 ~1998!#…. The agreement between
theory and experiment is good and the effects of nonhomogeneities in the flow are small.
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I. INTRODUCTION

The properties of a turbulent fieldu can be studied by
considering thenth-order moments of its increments over
separationrW. These moments are more commonly call
structure functions and are defined bySn5^(Du)n&[^(u(xW

1rW)2u(xW ))n&. In 1949, Yaglom@1#, following the notions
of Kolmogorov @2,3#, developed a relationship between t
second-order moments of the scalar increment over an in
val r in the longitudinal (x1) direction,^„Du(r )…2&, and the
third-order mixed moments,̂Du1(r )„Du(r )…2&, also in the
longitudinal direction. Hereu1 is the component of the ve
locity fluctuation in the streamwise~i.e., longitudinal! direc-
tion, u is the scalar fluctuation andDu(r )[u(x11r )
2u(x1). This relation, called Yaglom’s equation, is given b

2^Du1~Du!2&12k
d

dr
^~Du!2&5

4

3
^eu&r . ~1!

The rate of destruction of the scalar variance,^eu&, is
defined as

^eu&[k K ]u

]xi

]u

]xi
L , ~2!

where k is the scalar molecular diffusivity, and angul
brackets denote an average in time. Equation~1! is derived
within the framework of Kolmogorov@2,3#, that is to say,
assuming a cascade which is universal and locally isotro
for small enough scales and large enough Reyno
numbers.1

1Equation~1! is the scalar field analog of Kolmogorov’s equatio
@2^(Du1)3&16n(d/dr)^(Du1)2&5

4
5 ^e&r #, which applies to the

velocity field. Both Kolmogorov’s and Yaglom’s equations are p
ticularly relevant to the study of turbulence since they are the o
known relations derivable from conservation of momentum and
ergy, respectively.
1063-651X/2001/64~1!/016316~9!/$20.00 64 0163
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Writing Eq. ~1! as A1B5C, term C ~directly propor-
tional to ^eu&), is associated with the transfer of scalar va
ance at a scaler. Equation~1! indicates that the mean scala
variance transferred at a scaler is transferred by both turbu
lent advection~term A) and molecular diffusion~term B).
Equation ~1! could also be used as an alternate means
~experimentally! determining ^eu&, since the second- an
third-order moments could be inferred from hot- and co
wire measurements, via Taylor’s hypothesis~given a locally
isotropic and homogeneous flow!.

At small Reynolds numbers, the sumA1B never bal-
ancesC, except for the smallest scales~e.g., A1B5C for
r /h&5 at Rl566 @4#2!. ~In the limit of small separations,A
tends to 0 andB5C, as will be discussed shortly.!

For intermediate Reynolds numbers (100,Rl,500),
Kolmogorov’s equation and Yaglom’s equation are not s
isfied for moderate to large scales~e.g., Refs.@5–7#!. Equa-
tion ~1! is only found to be satisfied up to a maximum sca
which depends on the Reynolds number. It is never verifi
at the largest scales.

This discrepancy is the subject of this work. Though d
rived from a relation which is satisfied~the advection-
diffusion equation!, Yaglom’s equation is not satisfied. Th
can only occur if the derivation does not take into acco
the phenomena present in nonisotropic flows, such as the
under consideration. In this work, the phenomena are
decay of the turbulence and the production of scalar fluct
tions by a mean scalar gradient.

In order to account for the role of the large scales, Fris
@8# derived a version of Kolmogorov’s equation which in
cluded a random forcing term~acting only at large scales!. A
detailed study of Kolmogorov’s equation was presented
Hill @9#, where the nonstationarity of decaying flows w
taken analytically into account, but no quantitative verific
tion was given. The influence of large scales on the statist
properties of the cascade has also been addressed by
borg @10# and Moisyet al. @11#.

-
ly
-

2Rl[(urmsl/n), whereurms is the root-mean-square value of th
longitudinal velocity fluctuation,n is the kinematic viscosity, andl
is the Taylor microscale, defined asl[@^u1

2&/^(]u1 /]x1)2&#1/2.
©2001 The American Physical Society16-1
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L. DANAILA AND L. MYDLARSKI PHYSICAL REVIEW E 64 016316
Recently, it was shown@4# that, in grid turbulence, the
nonstationarity plays a capital role in the correct balance
Eq. ~1! and Kolmogorov’s equation. This was demonstra
by an analysis of the transfer of the scalar moments
retained the large-scale influence while simultaneously
plying the concepts of local homogeneity and isotropy
scales much smaller than those at which the scalar is
jected. Thus an accurate quantitative study of the transfe
the moments through the scales has to properly conside
large scale influence. In particular, Danailaet al. @4# showed
that violations of Kolmogorov’s and Yaglom’s equations im
ply a correlation between the large-scales of a turbulent fl
~where the fluctuations are generated! and the small scale
~where they are destroyed!. To further elucidate these corre
lations, Danailaet al. developed generalizations of Kolmog
orov’s equation and Yaglom’s equation that accounted
the effects of nonstationarity3 of the second-order moment
They are

2^~Du1!3&16n
d

dr
^~Du1!2&23

U1

r 4 E0

r

y4
]

]x1
^~Du1!2&dy

5
4

5
^e&r , ~3!

and

2^Du1~Du!2&12k
d

dr
^~Du!2&2

U1

r 2 E0

r

y2
]

]x1
^~Du!2&dy

5
4

3
^eu&r , ~4!

respectively. In Eq.~3!, ^e& is the mean dissipation rate o
the turbulent kinetic energy, andy is a dummy variable.

These predictions were found to agree well with expe
mental data of homogeneous, isotropic, decaying, g
generated turbulence.~Isotropic scalar fluctuations were ge
erated by means of a ‘‘mandoline’’@12# placed downstream
of the grid.! The deviation of the left-hand side of Eq.~1!
from 4

3 ^eu&r was found to be dictated by the effect of th
non-stationarity of the second-order moments. The devia
was equal to (U1 /r 2)*0

r y2(]/]x1)^(Du)2&dy—the third
term from the left in their modified Yaglom’s equation@Eq.
~4!#.

Given the success of the method proposed by Dan
et al., it is reasonable to extend it to more complex flow
The objective of this paper is to apply this method to flo
with mean scalar gradients~in addition to nonstationarities!.
Specifically, the method will be applied to decaying gri
generated turbulence with an imposed mean temperature

3In decaying grid-generated turbulence, this effect can be in
preted as a nonstationarity in a coordinate system that moves
the mean velocity of the flow. In a fixed coordinate system, it c
be interpreted as a large-scale nonhomogeneity. This is, in fact,
this effect is presented in the equations that follow.
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dient. We take into account the role of the large scales~by
accounting for the mean scalar gradientGW ), and we assume
that the terms appearing at relatively small scales, such
termsA andB, are isotropic.@We call this range of scales th
restricted scaling range~RSR! and define it to be the range o
scales from the Kolmogorov microscale„h[(n3/^e&)1/4

… to
the largest scale wherêDu1(Du)2& remains proportional to
r. In the RSR, the constant of proportionality is not nec
sarily equal to2 4

3 ^eu& because of the other effects we co
sider in this paper.# The obtained results will be compare
with the experimental data of Mydlarski and Warhaft@7#.

Before proceeding, we point out one aspect of flows w
mean scalar gradients. Assuming isotropy, the scalar ‘‘di
pation’’ rate^eu& can be estimated as

^eu& iso[3k^~]x1
u!2&. ~5!

Equation~5! is often used in experiments involving passi
scalars since the right hand side is readily measured. If
assumption of isotropy is indeed valid, then^eu& and^eu& iso
are equal. Hereafter, we will clearly differentiate betwe
^eu& and its isotropic form,̂ eu& iso , given by Eq.~5!.

Given that

lim
r→0

2k
d

dr
^~Du!2&5 lim

r→0
2k

d

dr K ~Du!2

r 2
r 2L

52k^~]x1
u!2&

d

dr
~r 2!5

4

3
^eu& isor ,

~6!

we see that Eq.~1! reduces toB5C in the limit r→0. In this
limit, term A is two orders of magnitude smaller and ther
fore negligible. Consequently, at the smallest scales, Eq.~1!
is consistent with the isotropic definition of the dissipati
rate, ^eu& iso . This result is to be expected since Yaglom
equation was derived assuming isotropy. Alternatively, Y
glom’s equation will be verified for very small scales if an
only if ^eu&5^eu& iso .

Experimental and numerical studies have shown@7,13–
16# that, in any turbulent flow with an imposed mean sca
gradient (GW ), the turbulent scalar field is anisotropic, eve
for the smallest scales and large Reynolds numbers. A
evant example of this anisotropy is that the temperature
rivative variance in the direction parallel toGW is different
than it is in the other directions@7,14,15#. In particular, if one
defines thex3 direction as parallel toGW , it was shown that
the variance of the scalar derivative along thex3 direction is
larger than the variance of the derivative along a perpend
lar direction~i.e., x1 or x2). For example,

Rx3x1
5^~]x3

u!2&/^~]x1
u!2&'1.221.4. ~7!
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EFFECT OF GRADIENT PRODUCTION ON SCALAR . . . PHYSICAL REVIEW E64 016316
In the flow under consideration,Rx3x1
51.4. Therefore, in

this work we usê eu&[3.4k^(]x1
u)2&.4

The implication is that the mean scalar gradient affe
the mixing down to the smallest scales, thus violating
concept of local isotropy. Therefore, in flows with mean s
lar gradients, Yaglom’s equation will not be verified atany
scale due to the scalar anisotropy present in such flows.

II. APPARATUS

The present results consist of a series of experiments
formed under conditions similar to those of Mydlarski a
Warhaft @7#. The discussion of the apparatus and the fl
characteristics will therefore only summarize what is giv
in the aforementioned paper.

The experiments were conducted in a 0.9130.9139.1 m3

low-speed, low-background-turbulence wind tunnel in t
Department of Mechanical and Aerospace Engineering
Cornell University. This tunnel was described by detail
Yoon and Warhaft@17#. The standard biplanar grids used
generate the turbulence in Yoon and Warhaft were repla
by an active grid which followed the design of Makita@18#.

The use of an active grid permits the achievement
much higher turbulent Reynolds numbers than by mean
standard ‘‘passive’’ grids. Active grids were used to achie
high-Reynolds-number, homogeneous, quasi-isotropic,
caying turbulence in average size wind tunnels@6,7,18# and,
in particular, they were used to study the effects of variatio
in Reynolds number on the turbulent velocity field@6# and
variations in Pe´clet number on the turbulent scalar field@7#.
The active grid is composed of round grid bars to wh
triangular agitator wings are attached. The grid bars are
tated by means of stepper motors located on the outsid
the grid. The active grid, tuned and operated in a manne
achieve good homogeneity of the flow, was described in
tail in the papers of Mydlarski and Warhaft@6,7#.

The mean temperature gradient was produced by me
of a toaster, first introduced by Sirivat and Warhaft@19#. It
consists of a set of parallel, differentially heated ribbons
cated at the entrance to the wind tunnel plenum cham
~see Sirivat and Warhaft@19# or Yoon and Warhaft@17#, for
a schematic!. The air entering the plenum chamber is hea
as it passes over the ribbons. As it continues though
honeycombs, screens, etc. in the plenum, the~momentum
and thermal! wakes of the heater ribbons are smoothed o
The result is a mean temperature gradient in the quasilam
flow upstream of the grid. The electric current pass
through each heater element is iteratively adjusted so th
linear temperature gradient results in the wind tunnel
section~downstream of the grid!. The resulting mean tem
perature gradient is in thex3 direction.~The mean flow is in
thex1 direction.! The velocity fluctuations~generated by the
grid! act against the mean temperature gradient to prod
thermal fluctuations. In this work, the ratio of production

4^eu&[(11Rx2x1
1Rx3x1

)k^(]x1
u)2&, and due to the nature of th

flow, Rx2x1
51 ~see Mydlarski and Warhaft@7#!.
01631
s
e
-

r-

e
at

ed

f
of
e
e-

s

o-
of
to
e-

ns

-
r,

d
e

t.
ar

g
t a
st

ce

turbulent velocity fluctuations by the mean scalar gradien
the dissipation of turbulent kinetic energy was23.44% ~at
x/M562—the point the furthest downstream at which me
surements were made. This is also the point where the d
pation was minimum, and thus the point where the effects
the stratification will be most significant.M is the mesh
length of the grid.! Thus the temperature fluctuations can
considered to be passive.

We additionally point out that in homogeneous, isotrop
decaying wind-tunnel turbulence, an imposed linear me
temperature gradient will not decay@20#. This is an idealiza-
tion, which is closely achieved in reality@19# if the tunnel
width is much larger than the integral scale of the turbulen
Assuming that the mechanical to thermal time scale is un
it can be shown@17# that, in such a flow, the scalar varianc
should be proportional tox1

22n , wheren is the decay expo-
nent of the turbulence@i.e., ^u1

2&/U1
2}(x1 /M )n]. In grid tur-

bulence,n'1.2– 1.3 and passive scalar fluctuations sho
grow as (x1 /M )0.720.8. As described by Mydlarski and War
haft @7#, an artifact of the active grid is a large integral sca
and therefore a slight decay of the scalar gradient in
streamwise direction@(]T/]x1)/(]T/]x3),0.1#. Since the
mean scalar gradient decays, so does the production of s
fluctuations. As a result, the variance does not grow wit
power law dependence onx1 /M . In fact, it reaches a maxi
mum atx1 /M537. However, when appropriately nondime
sionalized by the local mean temperature gradient an
length scale@i.e., ^u(x1)2&/(b(x1)M )2], the scalar variance
increases as (x1 /M )0.7 ~not shown!, as it should for passive
scalar fluctuations generated by a linear mean tempera
gradient.

The velocity fluctuations were measured using a TSI 12
X-wire probe. 3.05-mm-diameter tungsten wires with
length to diameter ratio of approximately 200 were us
They were operated with an overheat ratio of 1.8 using D
tec 55M01 constant-temperature hot-wire anemometers.
X wires were calibrated following the method of Brown
Antonia, and Chua@21#, which used an effective angle be
tween the wire and the streamwise direction. Following
method of Lienhard@22#, compensation of the velocity mea
surements for temperature fluctuations was made by me
of a modified King’s law with temperature-dependent co
ficients. The two wires comprising theX wire were separated
by 0.5 mm. The cold wire~to measure the temperature flu
tuations! was placed 0.5 mm away from theX wire.

The temperature fluctuations were measured using a
1210 single wire probe. Platinum cold-wires of 0.63-mm di-
ameter were used. The ratio of the etched length of the w
to its diameter was approximately 550, and the spacing
tween the prongs was at least three times the etched len
The probe current in the fast-response dc temperature bri
~based on the design of Haughdal and Lienhard@23#! was
approximately 250mA.

A thorough discussion of the frequency response of
probes and the cold-wire thermometers was given by M
larski and Warhaft@7#. Also addressed was the optim
choice of cold wire length given the competing effects
spatial resolution and conduction between the cold-wire
its prongs. The discussion~not repeated here! showed that
6-3
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L. DANAILA AND L. MYDLARSKI PHYSICAL REVIEW E 64 016316
there are no serious temporal resolution effects, and tha
chosen cold-wire length is an optimal choice since we
interested in both small- and large-scale statistics of the t
perature field.

Finally, all signals were high- and low-pass filtered a
digitized using a 12-bit analog to digital converter. 4 or
3105 data points were recorded for each record. The d
were sampled slowly~with intervals on the order of an inte
gral time period! for probability density function measure
ments, and rapidly~with intervals on the order of a Kolmog
orov time period! for spectral~time-series! measurements. I
is primarily the latter we use here.

Table I lists flow parameters atx1 /M562—the furthest
point downstream at which data was recorded. Turbu
quantities in this table were determined by subtracting, o
mean-square basis, the effect of the low-wave-number sp
present in the spectra~an artifact of the active grid!. This is a
more realistic description of the turbulence, and was
scribed in detail by Mydlarski and Warhaft@6#. However, the
structure functions presented in Sec. IV of this paper do c
tain contributions from the spikes.~It is less simple to elimi-
nate their effect in physical space than in wave-num
space.! These spikes occur at scales much larger than
integral scale~i.e., they occur at frequencies much smal
than those corresponding to the integral scale! and do not
affect the turbulence@6,7#.

III. THEORY

In this section, a generalized form of Yaglom’s equati
is developed by deriving the budget of^(Du)2&, which is
then integrated. The result is a modified version of Yaglom
equation that includes the effect of turbulent production a
nonstationarities.

TABLE I. Flow parameters.M represents the mesh length of th
active grid, 0.114 m~54.5 in.!. g represents the acceleration due
gravity, 9.81 m/s2.

Mean speed~m/s! 5.43

x1 /M 62
To ~°C! 28.7

b ~°C/m! 15.6
n (m2/s! 1631026

k (m2/s) 22.531026

urms ~m/s! 0.348
^e& @515n^(]u1 /]x1)2&# (m2/s3) 0.278

l (50.9urms
3 /^e&) ~m! 0.136

Rl $5^u2&@15/(n^e&)#1/2% 222
Rl (5urmsl /n) 2960

h @5(n3/^e&)1/4# ~mm! 0.348
l /h 391

u rms (°C) 1.91
^eu& @53.4k^(]u/]x1)2&# (°C2/s) 4.23

l u ~5u rms /b) ~m! 0.122
^u3u& (°C m/s) -0.295
g^u3u&/(To^e&) -0.0344
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A. Budget of Š„Du…2
‹

Using a procedure similar to that of Monin and Yaglo
@24#, we write the advection-diffusion equation for the tot
temperatureQ at two points,xW and xW 1(5xW1rW). rW is an
arbitrary vector equal to the separation between the
points. At the pointxW one can write

] tQ1ũi]xi
Q5k]xi

2 Q, ~8!

and at the pointxW 15xW1rW, one can write

] tQ
11ũi

1]x
i
1Q15k]x

i
1

2
Q1. ~9!

Repeated indices signify summation andũi and ũi
1 are

instantaneous velocities atxW and xW 1, respectively. We also

remark thatQ5T1u, where T[^Q& and thatuW̃ 5ũi5Ui

1ui , where Ui[^ũi&. Noting that ~i! GW 5Gi5]xi
T, ~ii !

]xi
ũi

15]xi
Q15]x

i
1ũi5]x

i
1Q50 ~since statistics measure

in one frame of reference are independent of the coordin
of the other frame!, ~iii ! ]xi

ũi5]x
i
1ũi

150 ~by conservation

of mass for an incompressible flow!, and ~iv! in the flow
under consideration, mean quantities are independent o
coordinate system in which they are written~i.e., Ui

1

5Ui ,D̄t
15D̄t5] t1Ui]xi

,5 Gi
15Gi and ^eu

1&5^eu&), sub-
traction of Eq.~8! from Eq. ~9! yields an equation for the
increment of temperature fluctuations:6

D̄tDQ1ui
1]x

i
1DQ1ui]xi

DQ5k]x
i
1

2
DQ1k]xi

2 DQ.

~10!

After some manipulation, one obtains

] tDT1] tDu1Ui]xi
DT1Ui]xi

Du1DuiGi

1]x
i
1~DuiDu!1ui]x

i
1Du1ui]xi

Du

5k]x
i
1

2
DT1k]xi

2 DT1k]x
i
1

2
Du1k]xi

2 Du. ~11!

We multiply Eq.~11! by 2Du and ~time! average to obtain7

] t^~Du!2&1Ui]xi
^~Du!2&12Gi^DuiDu&1]x

i
1^Dui~Du!2&

1]x
i
1^ui~Du!2&1]xi

^ui~Du!2&

5k]x
i
1

2
^~Du!2&22k^~]x

i
1Du!2&1k]xi

2 ^~Du!2&

5Where Dt5] t1ũi]xi
5] t1Ui]xi

1ui]xi
5D̄t1ui]xi

and simi-

larly Dt
15D̄t1ui

1]x
i
1.

6Differences between statistics atxW 1 andxW are denoted byD @e.g.,

DQ[Q12Q5Q(xW1rW)2Q(xW )].
7Noting that (Du)]xi

2 (Du)5]xi
@Du]xi

(Du)#2@]xi
(Du)#2

5
1
2 ]xi

2 @(Du)2#2@]xi
(Du)#2.
6-4
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EFFECT OF GRADIENT PRODUCTION ON SCALAR . . . PHYSICAL REVIEW E64 016316
22k^~]xi
Du!2&. ~12!

We can therefore write

] t^~Du!2&1Ui]xi
^~Du!2&12Gi^DuiDu&

1]x
i
1^Dui~Du!2&1~]xi

1]x
i
1!^ui~Du!2&

5k~]xi

2 1]x
i
1

2
!^~Du!2&22^eu

1&22^eu&

5k~]xi

2 1]x
i
1

2
!^~Du!2&24^eu&. ~13!

At this point, it is insightful to define a new variable@9# XW

asXW [(xW1xW 1)/2, such that

]x
i
1^•&[] r i

^•&1
1

2
]Xi

^•&, ]xi
^•&[2] r i

^•&1
1

2
]Xi

^•&.

~14!

Consequently,

]Xi
^•&5]xi

1]x
i
1. ~15!

The result—in terms of the new variables (rW,XW )—is

D̄t^~Du!2&12Gi^DuiDu&1S ] r i
1

1

2
]Xi D ^Dui~Du!2&

1~]Xi
!^ui~Du!2&5kS 2] r i

2 1
1

2
]Xi

2 D ^~Du!2&24^eu&.

~16!

As noted by Hill @9#, in a locally homogeneous flow, a
derivatives of statistics with respect to the new variableXW
~i.e., ]Xi

^•&) are negligible. It can be shown8 that the nonho-
mogeneous turbulent and molecular transport terms are s
in this flow. We could retain these terms in our analys
However, since they are small and because the objectiv
this work is to examine the effect of gradient production~in
addition to the decay! on the scalar fluctuations, we choo
to omit these terms in our analysis. A further analysis, wh
the nonhomogeneous terms are significant@25# would be of
merit.

In a fixed reference system,] t^•&[0. We will still call
termUi]xi

^& a ‘‘decay term’’ as it represents the decay of t
turbulence~in a fixed frame of reference rather than o

8Measurements indicate that the nonhomogeneity in the visc
transport of scalar variance is dominated by its longitudinal com
nent, i.e.,]xi

2 ^(Du)2&']x1

2 ^(Du)2&. In addition, it can be shown tha
the longitudinal component makes a much smaller contribution
the modified Yaglom’s equation than the terms that will be retain
The nonhomogeneity in the turbulent transport of scalar varian
though larger than the nonhomogeneity of viscous transport,
also be shown to play a minimal rolein this flowwhen compared to
the other terms retained in our analysis.
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which moves with the mean flow!. Neglecting the~small-
scale! nonhomogeneous terms, one obtains

Ui]xi
^~Du!2&1] r i

^Dui~Du!2&12Gi^DuiDu&

52k] r i

2 ^~Du!2&24^eu&. ~17!

Due to the geometry of the flow under consideratio
uUi u5U1 ~since U25U350) and uGi u5G35G since (G1
5G2'0). Therefore, Eq.~17! can be rewritten as

U1]x1
^~Du!2&1] r i

^Dui~Du!2&12G^Du3Du&

52k] r i

2 ^~Du!2&24^eu&. ~18!

B. Modified version of Yaglom’s equation

Given the budget of̂(Du)2& for the flow under consider-
ation, it can be integrated to obtain a modified version
Yaglom’s equation which accounts for the effects of produ
tion and non-stationarity.

We begin by assuming the isotropic form of the opera
] r i

[(2/r 1]/]r )5(1/r 2)] r(r
2
•). Multiplying Eq. ~18! by

r 2, integrating with respect tor and dividing byr 2, we obtain
a version of Yaglom’s equation that contains addition
terms resulting from the mean temperature gradient,GW , and
the nonstationarity:

2^Du1~Du!2&12k
d

dr
^~Du!2&

2
1

r 2E0

r

y2@U1]x1
^~Du!2&12G^Du3Du&#dy5

4

3
^eu&r .

~19!

Here y is a dummy variable, representing the separationr.
Equation~19! and its verification in Sec. IV are the principa
results of this paper.9 Denoting the new terms byD and P,
the new equation is then written as

A1B1D1P5C, ~20!

whereC54/3̂ eu&r .
Term D represents the effect of the decay@or nonstation-

arity, which, as mentioned in Sec. I, can also be conside
as a non-homogeneity in the streamwise (x1) direction#, and
is given by

D~r !52
U1

r 2 E0

r

y2]x1
^~Du!2&dy. ~21!

The production termP is

us
-

o
.

e,
n

9The large-scale~i.e., r→`) and small-scale~i.e., r→0) limits of
Eq. ~19! are respectively discussed in Appendices A and B.
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P~r !52
2G

r 2 E0

r

y2^Du3Du&dy. ~22!

The magnitudes of the terms in Eq.~19! are determined~ex-
perimentally! and presented in Sec. IV.

We now choose to make a few comments regarding
measurement of the new terms in our generalized form
Yaglom’s equation. In its derivation, we have assumed
isotropic form of] r i

. In an isotropic flow~such as decaying
grid turbulence! with isotropic temperature fluctuations~gen-
erated by a mandoline, as in Danailaet al. @4#!, such an
assumption is readily made. In the present work, the effec
production on the scalar fluctuations is of interest. By de
nition, for production of scalar fluctuations to occur, the flo
must be anisotropic~since a mean scalar gradient must
present!. However, we are able to justify the assumption
the isotropic form of the gradient operator as follows.

Since turbulent advection and molecular diffusion ter
correspond to small-scale motions, we assume they are
cally isotropic and will therefore only depend on the mod
lus r 5urWu. For simplicity, we measurer along thex1 axis.

The decay termD is a large-scale, nonhomogeneo
term ~see Ref.@4# for further physical explanations!. The
second-order scalar structure functions are not necess
isotropic in a flow with a mean scalar gradient. They a
approximately isotropic for relatively large scales, whe
^(Du)2&(r 1)'^(Du)2&(r 3)'2^u2&. At the smallest separa
tions, the longitudinal and transverse second-order struc
functions differ by a factor 1.4. This latter result derives fro
the already mentioned fact that^(]x3

u)2&/^(]x1
u)2&'1.2

21.4 @7#. However, since the decay term is only significa
at the largest scales@4#, it can be well approximated as de
pending solely onr ~again, measured along thex1 axis for
simplicity!.

The production termP is not isotropic. Were this term
isotropic, replacement ofu3 by ~for instance! u1, would not
change the value ofP. ~This is not the case:u^u1u&u
!u^u3u&u @19,26#.! However, in the limit of large scales, th
directional differences in this term disappear, sin
limur u→`P(rW)54G^u3u&, regardless of the orientation ofrW.
For small scales, the value ofP depends slightly on the spa
tial direction, as observed in Fig. 1. It will be shown belo
that the contribution ofP to Eq. ~19! decreases with scal
size. Therefore, it is a reasonable approximation to evalu
P(rW) using only one spatial direction (x1), since its contri-
bution is significant only at large scales.

IV. RESULTS

Figure 2 represents terms in Eq.~20!, divided by termC.
The supplementary contribution,S/C5(D1P)/C, is posi-
tive for all scales and increases in importance for larger
larger scales. The ratios (A1B)/C and (A1B1S)/C of the
terms appearing in Eq.~20! are to be compared with the wid
solid line ~which is equal to 1 for all scales!. While the
classical Yaglom equation~1! is verified to within 15% for
small scales, and worsens significantly for larger and lar
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scales, the modified equation maintains approximately
same level of precision for all scales.

At the smallest scales, the supplementary contributionS is
negligible, and Eq.~19! reduces to Eq.~6!. In this flow, Eq.
~6! is not verified because of the small-scale anisotropy o
passive scalar in flows with a mean scalar gradient. As m
tioned in Sec. I, the ‘‘total’’ scalar dissipation is therefo
different from the value obtained when local isotropy is a
sumed. Therefore, in the limit ofr→0, (A1B1S)/C tends
to a value less than one due to the nonisotropic definition
^eu& used in estimating termC. In this limit, (A1B1S)/C
should tend tô eu& iso /^eu&53/3.450.88, which it does, to
within experimental error.

FIG. 1. Longitudinal and transverse ‘‘heat flux structure fun
tions.’’ ^Du3(Du)&(r 1) ~!!, ^Du3(Du)&(r 3) (d), and
^Du1(Du)&(r 1) ~h!. These are DNS results graciously provided
A. Pumir.

FIG. 2. The nondimensionalized terms in the generalized fo
of Yaglom’s equation@Eqs. ~19! and ~20!#: (A1B1D1P)/C
51) as a function of longitudinal separation. The sum ofA/C
~dashed line! and B/C ~dot-dashed line!—Yaglom’s original
equation—is represented byL. The P/C source term is given by
h, 2D/C by 3, and their sum (S/C5(D1P)/C) by 1. The sum
of all the terms@(A1B1S)/C# is given byd.
6-6
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For larger scales~where the supplementary contribution
begin to take effect!, termP is positive, as must be the cas
since the turbulent heat flux in the direction of the gradien
negative~and therefore so must bêDu3Du&). In the flow
under consideration, termD is negative since]x1

^(Du)2&
.0, so that temperature fluctuations increase in the do
stream direction. This is a direct consequence of the pres
of the mean scalar gradientGW , which constitutes a continu
ous injection of scalar fluctuations in this flow.

In the limit of large separations, it is shown in Append
A that Eq.~19! is equivalent to the one-point scalar varian
budget. Hence the generalized version of Yaglom’s equa
tends toward 1 for large separations, as it should. At th
large scales, the ratio of the magnitudes of the produc
term ~P! and the nonstationary term~D! is about 3, in agree-
ment with the result obtained for the corresponding terms
the scalar variance budget.~Also see Fig. 4 for the position
x1 /M562 in Appendix A.!

In Danailaet al. @4#, the scalar field was isotropic, and th
nonstationarity was the only large-scale mechanism in
flow. Consequently, the nonstationarity dominated the g
eralized Yaglom’s equation at large scales.@In Danailaet al.,
Eq. ~4! was verified to within610% over the range of scale
investigated.# The present study involves two large-sca
mechanisms~production and nonstationarity!. This, com-
bined with the small-scale anisotropy arising from the me
temperature gradient, resulted in a less accurate balanc
Eq. ~19! than obtained by Danailaet al.

Figure 2 indicates that, in this flow, the transfer of sca
variance is dictated not only by turbulent advection and m
lecular dissipation, but also by turbulent production and n
stationarity. These mechanisms should be taken into acc
not only in the one-point scalar variance budget, but in
higher-order moment balances of all flows characterized b
moderate Reynolds number and fed by a mean-tempera
gradient.

V. CONCLUSIONS

A generalized form of Yaglom’s equation was derived f
the case of decaying grid turbulence with an imposed m
temperature gradient. The large-scale motion is character
by two phenomena: the nonstationarity of turbulent tempe
ture fluctuations and their production by a mean tempera
gradientGW . ~In this flow, the nonhomogeneous terms asso
ated with the turbulent and viscous transport of tempera
variance were not found to play a significant role.! The ef-
fects relating to the production and nonstationarity of te
perature fluctuations are mathematically expressed as
new terms in Yaglom’s equation. The generalized Yaglom
equation ~19! is well satisfied over an extended range
scales, particularly for the largest scales. This result emp
sizes the role played by the large-scale motion, herein
composed into two separate effects. However, the effec
the persistent anisotropy of passive scalars in flows wit
mean scalar gradient~resulting in^eu&Þ^eu& iso) is observed.
Such an anisotropy is inconsistent with the implicit assum
tion of local isotropy in the derivation of Yaglom’s equatio
01631
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Its effect cannot be ‘‘solved’’ nor explained by such an a
proach, and requires further efforts.
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Québec.

APPENDIX A: LARGE-SCALE LIMIT OF EQ. „19…

Equation~19! is examined in the limit of large scales~i.e.,
r→`). As already explained in Ref.@4#,

lim
r→`

D5 lim
r→`

2
U1

r 2 E0

r

y2]x1
^~Du!2&dy

5 lim
r→`

2
U1

r 2 F E
0

l

y2]x1
^~Du!2&dy

1E
l

r

y2]x1
^~Du!2&dyG ,

wherel is the integral length scale of the turbulence, defin
@6# as l[0.9̂ u2&3/2/^e&.

For r→`, *0
l y2]x1

^(Du)2&dy!* l
r y2]x1

^(Du)2&dy, since
the first integral has a finite value while the second one te
to infinity, viz. limr→`]x1

^(Du)2&52]x1
^u2& is finite while

y2 is continuously increasing. Thus, forr @ l , one can make
the approximation̂ (Du)2&'2^u2&, so that

lim
r→`

D.2
U1

r 2 El

r

y2]x1
^~Du!2&dy'2

2U1

3
]x1

^u2&r .

In a similar manner, one obtains

lim
r→`

P5
4

3
G^u3u&r . ~A1!

Given that

lim
r→`

A5 lim
r→`

B50, ~A2!

Eq. ~19! reduces to the one-point scalar variance budget:

U1]x1
^u2&/21G^u3u&52^eu&. ~A3!

A nondimensional form of Eq.~A3! is obtained by dividing
both sides by2^eu&, which can be written symbolically as

I 1II 51. ~A4!
6-7
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Terms I and II are shown as a function of downstream
distance in Fig. 3. TermI represents the nonstationarity an
term II represents the turbulent production. The former te
is negative~since]x1

^u2& is positive in the flow under con

sideration!. Its magnitude decreases withx1 to approximately
0.5 atx1 /M562. TermII is positive and larger than 1, bu
tends toward 1 for the furthest downstream positions.

At the two furthest downstream positions, the sum
termsI andII is equal to 1~to within 610%), indicating that
the production and decay terms balance the scalar diss
tion. In other words, the turbulent transport of scalar varia
has a small role at the large scales far enough away from
grid. Note that the flow under consideration has been pr
ously investigated~e.g., Sirivat and Warhaft@19# and Over-
holt and Pope@26#!. In Ref. @19#, the one-point energy bud
get was also balanced with a precision of610% –see Fig. 18
of this paper. The nonhomogeneous advection te
] i^uiu

2&, is negligible, since]3^u3u2&'0—see Fig. 11 and
the comments in Ref.@19#. ~Note that Fig. 11 of Ref.@19#
presents results for a case where the mean temperature
dient is generated by a mandoline. The results may differ
a mean temperature gradient generated by a toaster.!

We remark that in Fig. 3,I 1II '0.9. However, for the
largest values ofr shown in Fig. 2 (A1B1S)/C'1.1 ~at
x/M562). This is because atr 52000h, u andu1 are not
yet completely uncorrelated. In the limit ofr /h→`, u and
u1 decorrelate and (A1B1S)/C must then become equal t
I 1II .

Figure 4 represents the ratio of the production and n
stationary terms in Eq.~A4! ~i.e., II /I ), which is approxi-
mately 23 for a large range of positions behind the gr
This value is in agreement with limr→`P(r )/D(r )'23, as
can be observed in Fig. 2.

APPENDIX B: SMALL-SCALE LIMIT OF EQ. „19…

It is of interest to study what Eq.~19! becomes in the limit
of small scales (r→0). In this limit, ^(Du)2& can be ap-

FIG. 3. Terms in Eq.~A3! and~A4! as functions of downstream
position. I 52U1]x1

^u2&/@2^eu&# ~n!, II 52G^u3u&/^eu& ~L!,
and termsI 1II ~d!. * represents the variation of 2^eu&/G

2M2.
01631
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proximated, using a Taylor series expansion up to or
r 4, by

^~Du!2&.K S ]u

]x1
D 2L r 22

1

12K S ]2u

]x1
2D 2L r 4. ~B1!

Assuming isotropy, one can write

FIG. 4. Ratio of the production to nonstationary terms (II /I ) in
Eqs.~A3! and ~A4!.

FIG. 5. Terms in Eq.~B5!:

2
U1

15k

]^eu& iso

]x1
Y 2

k

3 K S ]2u

]x1
2D 2L ~n !,

2
2G

5 K ]u3

]x1
•

]u

]x1
L Y 2

k

3 K S ]2u

]x1
2D 2L ~* !,

and

2KS]u1

]x1
DS ]u

]x1
D2LY2

k

3 KS]2u

]x1
2D2L ~d!.
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]

]x1
^~Du!2&.

r 2

3k

]

]x1
^eu& iso . ~B2!

Similarly,

^Du3Du&.K ]u3

]x1

]u

]x1
L r 2,

^Du1~Du!2&.K ]u1

]x1
S ]u

]x1
D 2L r 3. ~B3!

Using relations~B1!–~B3!, the supplementary terms in Eq
~19! become

2
U1

r 2 E0

r

y2
]

]x1
^~Du!2&dy

52
U1

r 2

]

]x1
K S ]u

]x1
D 2L E

0

r

y2y2dy52
U1

15k

]^eu& iso

]x1
r 3,

2
2G

r 2 E0

r

y2^Du3Du&dy.2
2G

5 K ]u3

]x1
•

]u

]x1
L r 3. ~B4!

Substitution of the above expressions into Eq.~19!, replacing
^Du1(Du)2& by ^(]u1 /]x1)(]u/]x1)2&r 3 and equating
terms inr 3, one obtains
id

ds

01631
2
U1

15k

]^eu& iso

]x1
2

2G

5 K ]u3

]x1
•

]u

]x1
L

5 K S ]u1

]x1
D S ]u

]x1
D 2L 1

2k

3 K S ]2u

]x1
2D 2L . ~B5!

Equation~B5! is the transport equation for^eu& iso . It is
analogous to the transport equation for^e& ~or, equivalently,
the enstrophy^v2&), as first written by Batchelor and
Townsend@27#. The transport equation for̂eu& was previ-
ously studied@28–30# in decaying, isotropic grid turbulenc
heated by a mandoline.~There the budget of̂eu& iso was
simpler since a mean scalar gradient was not present.! These
studies only considered the first term on the left hand s
and the two terms on the right hand side of Eq.~B5!.

In the flow under consideration, both terms on the l
hand side of Eq.~B5! are small with respect to the dissipa
tive term, 2k^(]x1

2 u)2&/3, as can be seen in Fig. 5.
This result is different with respect to the one obtained

~standard! grid turbulence without a mean scalar gradie
@28#, where the role of the nonstationary term was found
be very important in the balance of Eq.~B5!. In our case,
equation~B5! is balanced (615%; see Fig.~5!! by the terms
on the right-hand side. This result is attributed to the pr
ence of the passive scalar production term, which constitu
the only difference between this flow and classical grid t
bulence with isotropic temperature fluctuation generated b
mandoline, and the higher Reynolds number of the pres
flow.
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